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BACKGROUND AND RATIONALE
Upper limb amputation inevitably results in loss of both motor and sensory function causing an 
impact on an individual’s economic, psychological, and social well-being. Prosthetics technology 
research attempts to mitigate these effects by restoring functionality to the lost limb. Recent 
research in the area focuses on electrically powered prostheses controlled by the muscle signals in 
the residual limb, termed myoelectric control [1]. These myoelectric devices utilize the existing 
neural pathways responsible for natural movement, offering an intuitive control interface. Although 
promising advancements have been made, studies report rejection rates for electrically powered 
prosthetics as high as 75% in children and 50% in adults [2]. Another study showed that the most 
common reason for abandonment was amputees being more functional in daily activities without 
the use of a prosthesis (98% of responses) [3].

Although there are many multifunctional hands available for prosthesis use [4], [5], commercial 
devices are unable to utilize them due to restricted control interfaces from the user. Recent research 
has focused on improving pattern recognition algorithms to decode the electromyographic signals 
(EMG) into multi degree of freedom (DOF) movements to enable more robust control for the user 
[1], [6]. Although results are promising in laboratory conditions, this technique has been unable 
to be transferred into commercial devices. This is due to current surface mounted EMG sensors 
having inherent unpredictable issues that affect the algorithm’s performance such as cross-talk, 
electrical interference, muscle fatigue effects, perspiration effects, and skin impedance changing 
over the course of a day [7].

An alternative to this technology for use in prosthetics is force myography (FMG) [8]. This 
technology seeks to exploit the deformation resulting from residual muscle movement to obtain 
prosthesis control. This is typically done in a very similar manner to EMG, however instead of 
measuring electrical activity, an array of pressure sensors wrapped around the user’s arm measures 
muscle deformation. The measured sensor values are used as inputs into a pattern recognition 
algorithm to predict the desired motions from the user. Many studies have shown success in offline 
tasks [8]–[15]. However, little work has been done to investigate pre-processing of the raw sensor 
signals before being fed into the pattern recognition algorithm. Additionally, all of the previous 
studies were done using offline classification metrics, leaving the question of whether the offline 
results translate to online performance.

OBJECTIVES
The objective of the project is to optimize an FMG sensor and algorithm package that can be used 
to robustly control upper limb prosthetics in real time. To measure muscle deformation signals, 
eleven Force Sensitive Resistor (FSR) sensors will be placed around the forearm. Identifying the 



Page: 2 of 37

MecE 653 - Final Report

physical response in multiple locations on the arm will yield greater control of the prosthetic as 
more of the arm’s muscles and tendons can be interpreted. An Inertial Measurement Unit (IMU) 
will be used to determine the arms orientation in space and how the arm is moving in terms of 
acceleration and angular velocity which is an unprecedented approach with FMG technology. 
When combined with the FSR signals the extra data from the IMU will allow the prosthetic control 
to not only rely on the muscle activity, but also the arm dynamics. Such data provides alternative 
control schemes and finer control due to a more accurate mapping of the arm. Digital filters will 
then be systematically investigated and implemented. Upon filtering and processing of the FSR 
and IMU signals, machine learning will be utilized to create a classification controller for a desktop 
mounted robotic arm, simulating a prosthetic, which will be ran in real time. Minimizing the 
sensor acquisition to robotic gesture execution time through hardware and rapid execution filters 
will be a significant focus for successfully achieving real time control as only offline studies have 
been performed.

METHODS
DATA ACQUISITION AND HARDWARE

To measure the force created by musculotendinous changes in the forearm and the orientation and 
movement of the arm a low profile, variable sized armband was designed and manufactured. The 
armband includes a custom designed printed circuit board (PCB) which interfaces with eleven 
FSR’s, an IMU, microcontroller, and Bluetooth module. The armband wirelessly sends raw sensor 
values to a microprocessor where all computation takes place such as digital signal processing and 
real time control of a desktop mounted robotic arm. A high level overview of the signal flow can 
be seen in Figure 1. 

Figure 1: Signal Flow Chart
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The IMU is a 6 DOF motion tracking device consisting of a three dimensional accelerometer 
and gyroscope. The accelerometer measures acceleration and the gyroscope angular velocity. 
Measurements are taken in the x (North), y (East), and z (Down) directions relative to a North-
East-Down (NED) coordinate system. The right hand rule is followed for positive rotations with 
roll (ɸ) about the x axis, pitch (θ) about the y axis, and yaw (Ѱ) about the z axis. Figure 2 displays 
the coordinate system on a users arm where the PCB with the IMU should be placed. The raw 
values from the IMU are passed to the microcontroller using an Inter-Integrated Circuit (I2C) 
with the combination of a serial data line (SDA) and serial clock line (SCL). To better interpret 
the data, the raw gyroscope values are subtracted from a calibration value to neglect any offset, 
and then divided by a sensitivity scale factor to yield a measurement in degrees per second (deg/s) 
(Appendix B.1 lines 210 to 244). The accelerometer is also divided by its respective sensitivity 
scale value to yield a measurement in g-force (g) (Appendix B.1 lines 230 to 244).

Eleven FSR pressure sensors are located in the armband, providing sufficient coverage of most 
forearms as in [9], [11]. The FSR’s are equally spaced around the circumference of the forearm of 
the user and are responsible for measuring the pressure change resulting from muscle deformation. 
The FSR’s are polymer thick film passive devices with an analog signal that decreases in resistance 
when a force is applied to the sensor pad. A multiplexer bridges eight FSR sensors to a single 
analog data line. The main purpose of the multiplexer is to increase the total analog input of the 
microcontroller and allow for sufficient coverage of the arm with sensors. The remaining three 
FSR’s are read by three analog pins on a microcontroller. The FSR’s ADC output is converted to 
force by calculating the resistance value of the sensor and linearly mapping it to the manufacturers 
conversion plot (Appendix B.1 lines 268 to 290).

Both the IMU and FSR raw signals are interpreted by a microcontroller. The raw values are then 
encoded for transmitting via a Bluetooth module which wirelessly transmits data at 2.4 GHz using 
a Bluetooth Serial Port Profile (SPP). A microprocessor equipped with Bluetooth technology 

Figure 2: Armband Coordinate System with Slight Negative Roll
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decodes and processes the raw values so real time control can be achieved. It should be noted that 
the primary use of the microcontroller is to acquire data, and no calculations are performed on it. 
The signals are processed on a microprocessor due to the increased performance capabilities while 
microprocessors typically lack ease of interfacing with various analog sensors.

Once the signals are processed onboard the microprocessor they are passed to an onboard control 
system which maps the signal to a 4 DOF desktop mounted robotic arm. The robotic arm simulates 
a prosthetic and is controlled by servo motors receiving Pulse Width Modulation (PWM) signals 
generated by the control scheme. The robotic arm used is an open source, 3D printed arm termed 
EEZYbotARM MK2 [16] and is pictured on the title page. The remaining components including 
the manufacturer, manufacturer location, and manufacturer part number are tabulated in Table 1 
and will be further discussed in the data acquisition section.

Table 1: Major Component Part List and Manufacturer Table

General Part Name Manufacturer Manufacturer 
Location

Manufacturer 
Part Number

Inertial Measurement 
Unit (IMU)

TDK InvenSense San Jose, USA MPU-6050

Force Sensitive 
Resistor (FSR)

Interlink Electronics Westlake Village, USA 30-49649

8:1 Multiplexer Nexperia Nijmegen, Netherlands 74HC4051BQ,115

Microcontroller ELEGOO Inc. Shenzhen, China Arduino Nano V3.0

Bluetooth Module ITEAD Studio Shenzhen, China HC-05

Microprocessor Raspberry Pi 
Foundation

Cambridge, UK Raspberry Pi 3B+

To ensure that the acquired signals are reliable and repeatable a custom PCB was designed, 
manufactured, and assembled. The PCB was designed as a shield to directly interface with the 
Arduino Nano V3.0 microcontroller. Creating the PCB allowed for permanent and reliable sensor 
connections with a small physical footprint preventing hindrance and discomfort to the user; another 
significant reason for abandonment of prosthetics [3]. The PCB was integrated into the armband 
and interfaced with the eleven FSR sensors while the IMU was directly mounted onto the PCB. 
When designing the PCB special consideration was taken for component selection, placement, 
and signal routing to minimize hardware noise and signal interference as per each manufacturers 
recommendation. With the implementation of the Bluetooth module the user does not need to be 
tethered to a computer or other fixed point further enhancing the user experience and reducing the 
risk of wires or connections failing from movement. A picture of the PCB and armband can be 
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EXPERIMENTAL PROCEDURE

The wristband was tightened onto the forearm of a test subject as seen in Figure 2. The subject 
then underwent a series of hand gestures as shown in Figure 4 where each position was held for 
approximately two seconds and 300 data points were obtained. Each gesture was executed once 
and over 30 different trails were conducted between two participants.

Figure 3: Custom PCB (Left) and Armband with FSR’s (Right)

Figure 4: Eight Unique Gestures with Armband

observed in Figure 3. A detailed schematic of the PCB and a list of all its components can be found 
in Appendix A along with references to datasheets for all components.

Albert
Cross-Out

Albert
Inserted Text
trials
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SIGNAL PROCESSING THEORY ON DATA ACQUISITION 
SAMPLE RATE

Human gestures can be classified as a random quantized signal, since the gesture (dependent 
variable) is happening continuously in time (independent variable), but has discrete values. 
However, digital sampling of these signals discritizes the time domain, shifting the signals into 
a random digital signal classification. A study done on hand motion frequency properties gave 
an upper bound on the frequency range of human gestures at 4.5 Hz [17]. Recent work in the 
literature undergoing similar implementations typically has a sample rate below 80 Hz ([9], [11]–
[13],) and/or has a low pass filter with a cutoff frequency of less than 4 Hz ([8], [13], [14]). The 
Arduino Nano V3.0 is centered around the ATmega328P microcontroller which was programmed 
at a sampling frequency of 200 Hz, which exceeds that of the previous studies. The Arduino Nano 
V3.0 was selected due to the accessibility of the ATmega328P microcontroller pins, availability 
of a micro USB port for programming, and the proven track record and documentation of the 
microcontroller. The sampling frequency of 200 Hz yields a Nyquist frequency of 100 Hz, which 
also far exceeds the range of human gestures, allowing ample room for filter design. In order 
to maintain a constant sample rate, a time synchronization function was implemented in the 
embedded code which uses the internal crystal oscillator clock with a resolution of 4 microseconds. 
This sample and hold technique yields a sample frequency of 200 ± 0.16 Hz, with an error of  
± 0.008%. It is ran once per sample and can be seen in detail Appendix B.2, lines 58 to 71.

Upon acquiring all 17 signals (11 FSR and 6 IMU), the data was cast into bytes for transmission 
by the HC-05 Bluetooth module. The HC-05 was selected as it can be configurable to be a master 
or slave, supports serial port profile (SPP) allowing for easy communication with microprocessors, 
and has a range up to 100 meters. As all raw signals are two byte integers a total of 34 bytes are 
packaged for transmission. To prevent reading incorrect or incomplete data a two byte header 
and two byte footer check is implemented (Appendix B.1 lines 135 to 159) where four unique 
hexadecimal numbers, two at the start and two at the end, of the transmission must be read before 
that package of data can be accepted and processed. Should the check fail the data package is 
discarded, however upon testing less than 0.1% of packets were lost. Although a fail slightly 
drops the real time sampling rate, it is still well above the Nyquist sampling rate and previous 
data points can be used without greatly affecting the real time control. This processes yields a 
bit rate of 60.8 kbps and a baud rate of 115200 was selected to ensure no bottlenecks affect the  
200 Hz sampling rate. The signal processing and calculations are performed on a Raspberry Pi 
3B+ as the microprocessor clock speed is nearly 90 times faster than the Arduino Nano V3.0 
and the hardware allows for the implementation of various control techniques and digital signal 
processing not available in an Arduino environment.
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DIGITAL SIGNAL PROCESSING THEORY

The analog to digital conversion for the FSR signals occurs in the ATmega328P microcontroller 
onboard the Arduino Nano V3.0. The microcontroller uses a 10-bit analog to digital converter 
(ADC) giving a total of 1024 possible quantizations with a full scale range of 5 V. The MPU-6050 
was selected due to its reliability, lost cost, and customizable full scale ranges. The IMU uses six 
internal ADC’s to digitize the accelerometer and gyroscope values in the x, y, and z directions 
using the NED coordinate system defined earlier. The output of the ADC is a 16 bit signed integer 
(-32768 to 32768) with a 3.3 V full scale analog range.

The full scale range of the FSR is 0 to 2 kg which is set by the manufacturer. The full scale range 
was selected based on a ratio of cost to performance of the sensor where the Interlink 30-49649 
provided the best results for the proposed application. The IMU has an adjustable full-scale range 
and is set at ± 2 g for the accelerometer and ± 250 deg/s for the gyroscope. The full scale range 
was experimentally determined by performing various common day tasks such as opening lids and 
picking and placing objects and observing the sensor response to maximize the use of all 16 bits 
and allow for more accurate measurements.

The quantization step Q and dynamic range DR are calculated using equations 1 and 2 respectively 
where R is the the full scale analog range and N is the number of bits. Table 2 tabulates a summary 
of the sensor attributes and the respective results.

Table 2: ADC and Digital Signal Processing Theory Summary

Value FSR IMU

Analog to Digital Converter ATmega328P MPU-6050

Full Scale Analog Range (R) 5.0 V 3.3 V

Number of Bits (N) 10 16

Quantization Step (Q) 4.88 mV 50.4 µV

Quantization Error  (Qerror) 2.44 mV

0.977 gram

50.4 µV

7.63 · 10-3 deg/s

6.10 · 10-5 g

Dynamic Range (DR) 60.2 dB 96.3 dB

(1)

(2)
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As stated in the ATmega328P datasheet, the quantization error is half of the least significant bit 
(LSB), indicating that microprocessor has shifted the quantization levels to occur at the middle 
of the analog ranges. This creates a quantization error of half of the quantization step or 2.44 mV 
or 0.977 grams. The quantization error is approximately 0.5% of the average FSR values and the 
variability of the signals between gestures ranges on average at least 50 grams (2% of average)
therefore the quantization error can be assumed negligible. Due to the small quantization error 
and low amounts of noise, a large signal to noise ratio was found further validating an acceptable 
quantization error. The quantization error can be reduced and SNR increased by changing to a 16 
bit ADC which would increase the dynamic range from 60.2 dB to 96.3 dB, however with current 
results this has not been a concern. 

The IMU does not shift the quantization step therefore, the quantization error and step are the same 
value. The IMU uses a 16 bit ADC and 3.3 V logic which provides a very small quantization error. 
When compared to the typical signals recorded during gestures the quantization error is well below 
1% of the signal value for both the gyroscope and accelerometer and the quantization error can be 
assumed negligible. Although the IMU tends to be noisier than the FSR’s, with 96.3 dB of dynamic 
range and a very small quantization error, a large SNR is achieved and the sensor and signals are 
reliable for the given application.

FILTERS
FSR FILTERING

As mentioned previously, the upper bound on human gesture frequency is given to be around 4.5 Hz. 
Any frequencies seen in the signals far above this value can thus be considered noise. Therefore, a 
low pass filter was designed to remove any high frequency noise that would affect the FSR signals. 
Figure 5 shows the time and spectral series of all eleven sensors while the user executed the eight 
unique hand gestures discussed previously. The frequency response shows almost no noise in the 
regions above 4.5 Hz. However, this is just one sample of the gestures executed, and does not 
represent the ensemble which may contain high frequency noise in a different environment or 
when expanding the experiment with different test participants. For this reason, a sinusoidal noise 
component at 50 Hz with a random amplitude between 0 and 15 grams was injected into the data, 
as observed in Figure 6. This will allow for better comparison between digital filters in a situation 
that may occur in the future.

As the filter will be used during real time execution, any lag introduced due to filter implementation is 
to be kept to a minimum. Therefore, computation time and phase delay are of particular importance. 
Additional specifications included a pass and stop band frequency of 5 Hz and 15 Hz respectively. 
Having the pass band frequency slightly higher than the 4.5 Hz suggested allows some space for 
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variation in different humans gesture speed. A transition width of 10 Hz corresponds to 10% of 
the Nyquist frequency, which will allow for some flexibility in filter design. Two finite impulse 
response (FIR) and two infinite impulse response (IIR) filters for a total of four digital low pass 
filter types were designed and compared for the given application; the Moving Average, Hanning 
Window, Butterworth, and Chebyshev Type II. For filters which did not allow for a specification 
of both pass and stop band frequency, a cutoff frequency at halfway between the two of 10 Hz 
was used. Additionally, the Butterworth and Chebyshev Type II filters were designed to have a 
stopband attenuation of 44 dB in order to more easily compare the result to the Hanning Window, 
which has a set stopband of 44 dB. The four filter shapes as well as phase delay responses can 
be seen in Figures 7 and 8. The red x’s mark the location of the start and stop band frequencies 
for easy reference. All filter design was completed using the MATLAB signal processing toolbox 
where the details can be found in Appendix B.3. 

Figure 5: Raw FSR Time Series and Spectral Series Plots During the Eight Unique Gestures 

Figure 6: Raw FSR Time Series and Spectral Series Plots During the Eight Unique Gestures 
with added 50 Hz Noise
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Figure 7: Filter Shapes and Phase Delays for FIR Designed Filters Moving Average (left) and 
Hanning Window (Right) 

Figure 8: Filter Shapes and Phase Delays for IIR Designed Filters Butterworth (left) and 
Chebyshev Type II (Right) 

IMU FILTERING

To accurately establish the attitude of a users arm with respect to Figure 2 the accelerometer and 
gyroscope values are converted to an Euler angle that represents the arms orientation and is usable 
in a control scheme. It should be noted that yaw will be not considered due to sensor limitations 
and it was found to have no benefit in controlling the desktop mounted robotic arm. Neglecting 
detailed derivations [18] the roll and pitch are calculated using trigonometric relations between the 
output from the accelerometers different axis (ax, ay, and az) and is observed in Equations 3 and 4.

(3)
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(4)

The gyroscope provides angular velocity, in deg/s and an angle can be found by integrating 
the sensor output based on the standardized sampling rate of 200 Hz. Each axis can be treated 
individually and adding the previous angle to the current angle, as in Equation 5, will provide roll 
and pitch.

(5)

Although roll and pitch is found two different ways, the results are less than optimal. The 
accelerometer provides accurate values when stationary, however when there is movement the 
signal becomes very noisey. Alternatively, the gyroscope provides great tracking during movement 
but the values drift when stationary. To achieve the desired results the sensors must be fused 
together in order to get the best attributes from both the sensors. This can be accomplished using 
a complementary filter. 

A complementary filter is a first order low pass IIR filter sometimes called a leaky integrator 
or exponentially weighted moving average. It was selected over alternative IMU fusion and 
filtering algorithms such as the Kalman or Madgwick filter due to its ease of implementation, low 
computation time, and strong performance. It works using Equations 3 through 5 and applying a 
high pass and low pass coefficient for the gyroscope and accelerometer angle values respectively. 
The complementary filter can be observed in Equation 6.

(6)

The coefficient α is related to the time constant τ and is defined in Equation 7. The time constant 
defines the boundary of trusting the gyroscope or accelerometer angle. For time periods greater 
than τ priority is placed on the accelerometer angle to mitigate gyroscope drift while values less 
than τ place the priority on the gyroscope angle and the noisy accelerometer data is filtered out.

(7)

The implementation of the complementary filter not only fuses together the accelerometer and 
gyroscope data but also filters it to be usable. Although the filter is low pass in nature and additional 
filtering could be implemented, the results for the proposed application are more than acceptable. 
Additionally, many implementations in literature only require the use of a complementary filter to 
achieve their desired results to achieve robust control [19]–[21].
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RESULTS
FSR FILTER DESIGN RESULTS

A summary of the results of the FSR filter design can be seen in Table 3. Additionally, a close up 
view of a single FSR with each filter applied separately can be seen in Figure 9.

Table 3: FSR Filter Design Results Summary

Filter Type Type
Stopband 

Attenuation 
(dB)

Computation 
Time (ms) Order

Max Phase 
Delay in 

Passband 
(samples)

Moving Average FFR 10 0.0012 10 5

Hanning Window FFR 44 0.0024 33 16

Butterworth IIR 48 0.0012 5 25

Chebyshev IIR 44 0.0012 4 12

Figure 9: Close up View of Single FSR Signal with Four Designed Filters

The stop band attenuation of the moving average filter of 10 dB was significantly lower than the 
remaining three filters at 44 dB. This caused the noisy signal to still be visible in a close up view 
of the moving average signal, but not in the remaining three signals. This was expected since 
attenuations of 10 dB and 44 dB correspond to reducing the noise to 32% and 0.63% of the original 
value respectively. It should also be noted that the moving average filter cannot be tuned to fix 
this problem, as increasing the order will result in significant passband attenuation as well as a 
phase delay surpassing the other filtering methods. For this reason, the moving average filter was 
not considered for the given application. The major discernable difference in the remaining three 
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filters was the amount of lag induced by the phase delay. Since this filter will be ran in real time, 
signal lag is an undesirable side effect and should be minimized. For this reason, the Chebyshev 
Type II filter was chosen as the best candidate from the group, since it had the smallest phase delay 
with a comparable stopband attenuation. 

IMU FILTER RESULTS

Through experimental tuning an α of 0.98 (τ = 0.245 s) provided optimal results for implementing 
a successful complementary filter. The results of a participant moving their arm in a down-up-
down sequence in the x direction can be seen in Figure 10 where the resulting pitch is shown. 
As observed in the figure all signals start at the same value. While the accelerometer proves to 
be noisey especially during movement (2 s - 7 s) the gyroscope holds the resulting angle smooth 
and removes the noise and high frequency elements. At the end of the trail (7 s - 10 s) the arm is 
held stationary and the gyroscope begins to drift however the accelerometer holds the angle true 
therefore validating a successful sensor fusion and a stable value to used in control.

Figure 10: Complementary Filter Results about the Y Axis, Pitch

DISCUSSION AND CONCLUSIONS 
IMPLEMENTATION 

Using the experimental procedure defined, 300 data points for each of the eight gestures were 
filtered and labeled providing a total of 2400 data points of known gestures. Using Scikit Learn 
0.20.3 and Python 3.7.2 the data was passed to a support vector machine (SVM) algorithm which 
generates a classifier by drawing hyperplanes about regions of interest (Appendix B.1, lines 17 to 
87). With a trained classifier sensor data is acquired in real time, sent to the SVM, and the resulting 
gesture classification is mapped to the robotic arm in real time. The IMU data is not used in the 
classifier but is directly mapped from the user’s arm attitude to the simulated prosthetic providing 
additional control options in tandem with the gestures. 
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To generate a robust classifier it is desirable to have all outputs be in a concentrated area that is 
separable from other clusters. To visually present the separability of the acquired data, a principal 
component analysis (PCA) was performed to compress the eleven dimension FSR data into three 
dimensions. To investigate the impact of the FSR lowpass filter designed, the artificial noise discussed 
earlier was injected into the training data. The PCA analysis done previously was reproduced with 
this new data and a visual comparison can be found in Figure 11. The clusters are now much more 
spread out, some even bleeding into others. This illustrates the importance of the designed Chebyshev 
Type II filter in FMG real time control as the presence of noise may introduce classification errors.

CONCLUSION

A FMG sensor and algorithm package was optimized to implement robust, real time control of a 
simulated prosthetic device. Two iterations of prototyping have been achieved, with the second 
design resulting in a wireless, low profile wristband containing 11 FSR sensors and an IMU 
capable of sampling reliably at 200 Hz. Moving Average, Hanning Window, Butterworth, and 
Chebyshev Type II low pass filters were investigated for unwanted high frequency noise reduction 
in the FSR sensors. The Chebyshev Type II was determine to be optimal due to its high attenuation, 
low order, and low phase delay properties. Sensor fusion was utilized to accurately determine 
wristband orientation while also compensating for high frequency noise and drifting values using 
a complementary filter. A SVM classification algorithm was used to successfully classify eight 

Figure 11: PCA Analysis of Eight Gestures Without Noise (Top-Left) and With 50 gram (Top-
Right), 100 gram (Bottom-Left), and 200 gram (Bottom-Right) Noise Amplitude

Accuracy: 100% Accuracy: 99%

Accuracy: 94% Accuracy: 79%
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different hand gestures. The output of these hand gestures combined with the users arms orientation 
was mapped to a 4-DOF desktop robotic arm in real time, simulating the use of a prosthetic.

FUTURE WORK

Signal Processing: It should be reiterated that the noise used to choose a low pass filter was 
added artificially with an arbitrarily chosen amplitude. The noise that the device may see in actual 
use will not necessarily be similar. The sensor signals should be monitored during common day 
situations to get an idea of the type of noise that will likely be seen by the end user of the device. 
The low pass filters used for the FSR sensors were analyzed using similar stop band attenuation to 
provide a fair comparison, however the amount of attenuation required may vary depending on the 
noise observed. In the future, the experimentally determined noise should be used to choose the 
parameters of the implemented low pass filter.

Classifier Outputs: Although the system is functional and working, there remains much to be 
optimized on the pattern recognition side of the device. The eight gestures were chosen arbitrarily, 
and many more could be investigated. Additionally having eight classes is not necessary for 
prosthetic use as commercial myoelectric devices typically only utilize one or at most two degrees 
of freedom. This would require only five classes to achieve control (e.g. rest, hand close, hand 
open, wrist-CW, wrist-CCW). A systematic experiment investigating multiple individuals in 
various gestures could be done to determine which gestures are the most separable, and therefore 
most robust for use in the classifier. 

Classifier Inputs: Thus far, only the raw signals have been used as inputs into the classifier. 
Techniques such as normalization and mean removal have not been explored, but logically could 
result in a classifier that is more adaptable to varying wristband tightness. Many different feature 
extraction techniques have been investigated for EMG control, and have shown to increase the 
classification accuracy by up to 10% [7]. Using the IMU Euler angle output as an additional feature 
has also yet to be investigated. This could provide higher accuracy in mobile situations, as the 
wristbands inertia will compress the FSR sensors during acceleration.

Training Data: Every time the device it is taken on and off a new training session is required. 
The robustness of a classification model to wristband shift and varying tightness has not been 
investigated. Data could be gathered while varying wristband tightness and location. This dataset 
could be used to systematically investigate classifier response to varying physical wristband 
parameters. The device has largely been tested on only two individuals. Comparing the performance 
among many different subjects is essential to determining the effectiveness of this device. The 
device should also be tested on person’s of amputation in order to confirm that performance on 
able bodied individuals transfers to the intended target. 
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APPENDIX A: PCB AND COMPONENTS
Section A.1 provides a schematic of the PCB with detailed design notes and Section A.2 
displays the PCB board layout. Section A.3 tabulates all components used and a reference to 
the components data sheets. For complete design files refer to: https://github.com/Rico5678/
GestureControlledRoboticArm_MecE653

A.1 - PCB SCHEMATIC

Figure A1: 8 Channel Multiplexer and Voltage Dividers for FSR’s
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Figure A2: Pin and Header Assignment
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Figure A3: 6-DOF Inertial Measurement Unit (IMU) and Logic Level Conversion
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A.2 – PCB BOARD LAYOUT

Figure A4: Top View of PCB Layout With Ground Planes (Left) and Without Ground  
Planes (Right)
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A.3 – BILL OF MATERIALS
Table A1: Bill of Materials for PCB and Data Sheet Hyperlinks

Designator Value Manufacturer Part # Rqd 
Qty

Cost / 
Unit

Total 
Cost

Data 
Sheet

R1-R8 5.1 kΩ ERJ-3EKF5101V 8  $0.10  $0.78 Link

R9 1 kΩ ERJ-3EKF1001V 1  $0.10  $0.10 Link

R10 2 kΩ ERJ-3EKF2001V 1  $0.10  $0.10 Link

R11-R16 10 kΩ ERJ-3EKF1002V 6  $0.10  $0.59 Link

C1-C3 0.1 uF CL10B104KB8NNNC 3  $0.05  $0.14 Link

C4 2.2 nF CL10B222JB8NNNC 1  $0.06  $0.06 Link

C5 10 nF CL10B103KB8NNNC 1  $0.05  $0.05 Link

Q1,Q2 - BSS138 2  $0.40  $0.79 Link

U1 - 74HC4051BQ,115 1  $0.59  $0.59 Link

U2 - MPU-6050 1  $11.01  $11.01 Link

Total: $14.21

Additional data sheets for external components are referenced below:

 - HC-05 Bluetooth Module - Link

 - ATmega328P Microcontroller - Link

 - FSR’s - Link

 - Raspberry Pi 3 Model B+ - Link

https://industrial.panasonic.com/cdbs/www-data/pdf/RDA0000/AOA0000C304.pdf
https://industrial.panasonic.com/cdbs/www-data/pdf/RDA0000/AOA0000C304.pdf
https://industrial.panasonic.com/cdbs/www-data/pdf/RDA0000/AOA0000C304.pdf
https://industrial.panasonic.com/cdbs/www-data/pdf/RDA0000/AOA0000C304.pdf
http://www.samsungsem.com/kr/support/product-search/mlcc/CL10B104KB8NNNC.jsp
http://www.samsungsem.com/kr/support/product-search/mlcc/CL10B222JB8NNNC.jsp
http://www.samsungsem.com/kr/support/product-search/mlcc/CL10B103KB8NNNC.jsp
https://www.onsemi.com/pub/Collateral/BSS138-D.PDF
https://assets.nexperia.com/documents/data-sheet/74HC_HCT4051.pdf
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
http://www.electronicaestudio.com/docs/istd016A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf


Page: 23 of 37

MecE 653 - Final Report

01. from sklearn.decomposition import PCA  
02. from threading import Thread  
03. from sklearn import svm  
04. from mpl_toolkits import mplot3d  
05. import RPi.GPIO as GPIO  
06. import matplotlib.pyplot as plt  
07. import numpy as np  
08. import pandas as pd  
09. import serial  
10. import time  
11. import struct  
12. import copy  
13. import math  
14. import pickle  
15.   
16.   
17. class Model:  
18.     def __init__(self, model=None):  
19.         # Class / object / constructor setup  
20.         self.model = model  
21.         self.trainingxdata = None  
22.         self.trainingydata = None  
23.   
24.     def get_training_data(self, s, data, n, classnum, trainnum):  
25.         # Get user to do the gestures and record the data  
26.         xdata = []  
27.         ydata = []  
28.         counter = 0  
29.         for i in range(0, trainnum):  
30.             print("Training iteration: {0}".format(i))  
31.             for k in range(0, classnum):  
32.                 input("Class number: {0}".format(k))  
33.                 for j in range(0, n):  
34.                     data.getData(s)  
35.                     a = [int(x) for x in data.force]  
36.                     xdata.append(a)  
37.                     ydata.append(k)  
38.   
39.         self.trainingxdata = np.array(xdata)  
40.         self.trainingydata = np.array(ydata)  
41.   
42.     def plot_pca(self, show=True):  
43.         # Squash down the dimensions of FSR data and show in 3 dimensions for groupings  
44.         self.pca = PCA(n_components=3)  
45.         self.pca.fit(self.trainingxdata)  
46.         Xpca = self.pca.fit_transform(self.trainingxdata)  
47.         ax = plt.axes(projection='3d')  
48.   
49.         for i in range(0, int(self.trainingydata.max()) + 1):  
50.             Xtemp = Xpca[self.trainingydata == i]  
51.             ax.scatter3D(Xtemp[:, 0], Xtemp[:, 1], Xtemp[:, 2], cmap='Greens')  
52.   
53.         if show is True:  
54.             plt.figure(1)  
55.             plt.show()  
56.   
57.     def trainSVM(self):  
58.         # Create a SVM classifier using sklearn  
59.         self.model = svm.SVC(kernel='rbf', gamma='scale')  
60.         self.model.fit(self.trainingxdata, self.trainingydata)  
61.   
62.     def predict(self, data):  
63.         # Identify the gesture and return the result  
64.         prediction = self.model.predict([data])  

APPENDIX B: CODE  
The code used for reading the wireless signal and converting the raw signals to a physical 
interpretation on the microprocessor and then the robotic arm is in Section B.1. Section B.2 provides 
the main code used by the microcontroller for reading the raw sensor data and transmitting it 
wirelessly to the microprocessor. Section B.3 contains the code for designing the FSR filters in a 
MATLAB environment. For full documentation and the latest version of all code refer to: https://
github.com/Rico5678/GestureControlledRoboticArm_MecE653

B.1 – MICROPROCESSOR CODE (PYTHON)
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65.         return prediction  
66.   
67.     def score(self, xdata, ydata):  
68.         # How accurate was the model?  
69.         score = self.model.score(xdata, ydata)  
70.         return score  
71.   
72.     def savemodel(self, filename):  
73.         # Save with pickles so that retraining is not required  
74.         pickle.dump(self, open(filename, 'wb'))  
75.   
76.     def data_split(self, p):  
77.         # Arrange the data into something that is useful  
78.         data = np.hstack((self.trainingxdata, np.transpose(np.array([self.trainingydata]))))  
79.         datashuff = np.array(data)  
80.         np.random.shuffle(datashuff)  
81.   
82.         cutoff = int(p * data.shape[0])  
83.         self.trainingxdata = datashuff[0:cutoff, 0:-1]  
84.         self.trainingydata = datashuff[0:cutoff, -1]  
85.   
86.         self.testingxdata = datashuff[cutoff::, 0:-1]  
87.         self.testingydata = datashuff[cutoff::, -1]  
88.   
89.   
90. class DAQ:  
91.     def __init__(self, serialPort, serialBaud, dataNumBytes, numSignals):  
92.         # Class / object / constructor setup  
93.         self.port = serialPort  
94.         self.baud = serialBaud  
95.         self.dataNumBytes = dataNumBytes  
96.         self.numSignals = numSignals  
97.         self.rawData = bytearray(numSignals * dataNumBytes)  
98.         self.dataType = None  
99.         self.isRun = True  
100.         self.isReceiving = False  
101.         self.thread = None  
102.         self.dataOut = []  
103.   
104.         if dataNumBytes == 2:  
105.             self.dataType = 'h'  
106.   
107.         # Connect to serial port  
108.         print('Trying to connect to: ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.'
109.         try:  
110.             self.serialConnection = serial.Serial(serialPort, serialBaud, timeout=4)  
111.             print('Connected to ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.'
112.         except:  
113.             print("Failed to connect with " + str(serialPort) + ' at ' + str(serialBaud) + 
114.   
115.     def readSerialStart(self):  
116.         # Create a thread  
117.         if self.thread == None:  
118.             self.thread = Thread(target=self.backgroundThread)  
119.             self.thread.start()  
120.   
121.             # Block till we start receiving values  
122.             while self.isReceiving != True:  
123.                 time.sleep(0.1)  
124.   
125.     def backgroundThread(self):  
126.         # Pause and clear buffer to start with a good connection  
127.         time.sleep(2)  
128.         self.serialConnection.reset_input_buffer()  
129.   



Page: 25 of 37

MecE 653 - Final Report

130.         # Read until closed  
131.         while (self.isRun):  
132.             self.getSerialData()  
133.             self.isReceiving = True  
134.   
135.     def getSerialData(self):  
136.         # Initialize data out  
137.         tempData = []  
138.   
139.         # Check for header bytes and then read bytearray if header satisfied  
140.         if (struct.unpack('B', self.serialConnection.read())

[0] is 0x9F) and (struct.unpack('B', self.serialConnection.read())[0] is 0x6E):  
141.             self.rawData = self.serialConnection.read(self.numSignals * self.dataNumBytes)  
142.   
143.             # Copy raw data to new variable and set up the data out variable  
144.             privateData = copy.deepcopy(self.rawData[:])  
145.   
146.             # Loop through all the signals and decode the values to decimal  
147.             for i in range(self.numSignals):  
148.                 data = privateData[(i*self.dataNumBytes):

(self.dataNumBytes + i*self.dataNumBytes)]  
149.                 value, = struct.unpack(self.dataType, data)  
150.                 tempData.append(value)  
151.   
152.         # Check if data is usable otherwise repeat (recursive function)  
153.         if tempData:  
154.             if (struct.unpack('B', self.serialConnection.read())

[0] is 0xAE) and (struct.unpack('B', self.serialConnection.read())[0] is 0x72):  
155.                 self.dataOut = tempData  
156.             else:  
157.                 return self.getSerialData()  
158.         else:  
159.             return self.getSerialData()  
160.   
161.     def close(self):  
162.         # Close the serial port connection  
163.         self.isRun = False  
164.         self.thread.join()  
165.         self.serialConnection.close()  
166.   
167.         print('Disconnected...')  
168.   
169.   
170. class Sensors:  
171.     def __init__(self, gyroScaleFactor, accScaleFactor, VCC, Resistor, tau):  
172.         # Class / object / constructor setup  
173.         self.gyroScaleFactor = gyroScaleFactor  
174.         self.accScaleFactor = accScaleFactor  
175.         self.VCC = VCC  
176.         self.Resistor = Resistor  
177.         self.tau = tau  
178.   
179.         self.gx = None; self.gy = None; self.gz = None;  
180.         self.ax = None; self.ay = None; self.az = None;  
181.   
182.         self.gyroXcal = 0  
183.         self.gyroYcal = 0  
184.         self.gyroZcal = 0  
185.   
186.         self.gyroRoll = 0  
187.         self.gyroPitch = 0  
188.         self.gyroYaw = 0  
189.   
190.         self.roll = 0  
191.         self.pitch = 0  
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192.         self.yaw = 0  
193.   
194.         self.dtTimer = 0  
195.   
196.         self.FSRvalues = []  
197.         self.force = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]  
198.   
199.     def getRawSensorValues(self, s):  
200.         # Get raw values from serial connection  
201.         val = s.dataOut  
202.         self.gx = val[0]  
203.         self.gy = val[1]  
204.         self.gz = val[2]  
205.         self.ax = val[3]  
206.         self.ay = val[4]  
207.         self.az = val[5]  
208.         self.FSRvalues = [val[6], val[7], val[8], val[9], val[10], val[11], val[12], val[
209.   
210.     def calibrateGyro(self, s, N):  
211.         # Display message  
212.         print("Calibrating gyro with " + str(N) + " points. Do not move!")  
213.   
214.         # Take N readings for each coordinate and add to itself  
215.         for ii in range(N):  
216.             self.getRawSensorValues(s)  
217.             self.gyroXcal += self.gx  
218.             self.gyroYcal += self.gy  
219.             self.gyroZcal += self.gz  
220.   
221.         # Find average offset value  
222.         self.gyroXcal /= N  
223.         self.gyroYcal /= N  
224.         self.gyroZcal /= N  
225.   
226.         # Display message and restart timer for comp filter  
227.         print("Calibration complete")  
228.         self.dtTimer = time.time()  
229.   
230.     def processIMUvalues(self):  
231.         # Subtract the offset calibration values  
232.         self.gx -= self.gyroXcal  
233.         self.gy -= self.gyroYcal  
234.         self.gz -= self.gyroZcal  
235.   
236.         # Convert to instantaneous degrees per second  
237.         self.gx /= self.gyroScaleFactor  
238.         self.gy /= self.gyroScaleFactor  
239.         self.gz /= self.gyroScaleFactor  
240.   
241.         # Convert to g force  
242.         self.ax /= self.accScaleFactor  
243.         self.ay /= self.accScaleFactor  
244.         self.az /= self.accScaleFactor  
245.   
246.     def compFilter(self):  
247.         # Get the processed values from IMU  
248.         self.processIMUvalues()  
249.   
250.         # Get delta time and record time for next call  
251.         dt = time.time() - self.dtTimer  
252.         self.dtTimer = time.time()  
253.   
254.         # Acceleration vector angle  
255.         accPitch = math.degrees(math.atan2(self.ay, self.az))  
256.         accRoll = math.degrees(math.atan2(self.ax, self.az))  
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257.   
258.         # Gyro integration angle  
259.         self.gyroRoll -= self.gy * dt  
260.         self.gyroPitch += self.gx * dt  
261.         self.gyroYaw += self.gz * dt  
262.         self.yaw = self.gyroYaw  
263.   
264.         # Comp filter  
265.         self.roll = (self.tau)*(self.roll - self.gy*dt) + (1-self.tau)*(accRoll)  
266.         self.pitch = (self.tau)*(self.pitch + self.gx*dt) + (1-self.tau)*(accPitch)  
267.   
268.     def processFSRvalues(self):  
269.         # Loop through all values  
270.         for ii in range(len(self.FSRvalues)):  
271.             # Analog value to voltage  
272.             fsrV = self.FSRvalues[ii] * self.VCC / 1023.0  
273.   
274.             # Use voltage and static resistor value to calculate FSR resistance  
275.             try:  
276.                 fsrR = ((self.VCC - fsrV) * self.Resistor) / fsrV  
277.             except:  
278.                 fsrR = 1e6  
279.   
280.             # Guesstimate force based on slopes in figure 3 of FSR datasheet (conductance)
281.             fsrG = 1.0 / fsrR  
282.   
283.             # Break parabolic curve down into two linear slopes  
284.             if (fsrR <= 600):  
285.                 self.force[ii] = (fsrG - 0.00075) / 0.00000032639  
286.             else:  
287.                 self.force[ii] =  fsrG / 0.000000642857  
288.   
289.         # Write the last entry of force to be the average value  
290.         self.force[11] = np.mean(self.force)  
291.   
292.     def getData(self,s):  
293.         # Get data from serial  
294.         self.getRawSensorValues(s)  
295.   
296.         # Process IMU values  
297.         self.compFilter()  
298.   
299.         # Process FSR values  
300.         self.processFSRvalues()  
301.   
302.     def logData(self, s, T):  
303.         # Set up timer, counter, and temp data storage  
304.         startTime = time.perf_counter()  
305.         count = 0  
306.         tempData = []  
307.   
308.         # Run for T seconds  
309.         while time.perf_counter() < startTime + T:  
310.             self.getData(s)  
311.             tempData.append([time.perf_counter() - startTime] + self.force + [self.roll, 
312.             count += 1  
313.   
314.         # Close serial connection, write data, and display sampling rate  
315.         print("Samping rate: ", count / (time.perf_counter() - startTime), " Hz")  
316.   
317.         # Write data to CSV  
318.         df = pd.DataFrame(tempData, columns=

['Time', 'FSR1', 'FSR2', 'FSR3', 'FSR4', 'FSR5', 'FSR6',  
319.                                    'FSR7', 'FSR8', 'FSR9', 'FSR10', 'FSR11', 'Avg', 'Roll'
320.   
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321.         df.to_csv('data.csv', index=None, header=True)  
322.   
323.   
324. class robotArm:  
325.     def __init__(self):  
326.         # Joint PWM ranges  
327.         self.joint1Range = [500,2300]  
328.         self.joint2Range = [1000,2000]  
329.         self.joint3Range = [500,1200]  
330.         self.joint4Range = [1100,1100]  
331.   
332.     def startControl(self):  
333.         # Run `pinout` to see the numbers  
334.         GPIO.setmode(GPIO.BOARD)  
335.   
336.         # Set up PWM pins on GPIO  
337.         GPIO.setup(12, GPIO.OUT)  
338.         GPIO.setup(13, GPIO.OUT)  
339.         GPIO.setup(18, GPIO.OUT)  
340.         GPIO.setup(19, GPIO.OUT)  
341.   
342.         # Initialize all servos to center position  
343.         self.joint1 = GPIO.PWM(12, 50)  
344.         self.joint2 = GPIO.PWM(13, 50)  
345.         self.joint3 = GPIO.PWM(18, 50)  
346.         self.joint4 = GPIO.PWM(19, 50)  
347.   
348.         # Write start position  
349.         self.joint1.start(7.5)  
350.         self.joint2.start(7.5)  
351.         self.joint3.start(7.5)  
352.         self.joint4.start(7.5)  
353.   
354.     def updateState(self, state):  
355.         # percentage / (20 ms * unit conversion)  
356.         dutyCycleScale = 100 / (20*1000)  
357.   
358.         # Check the different states and write a pule  
359.         if state == 1:  
360.             # Fist  
361.             self.joint4.ChangeDutyCycle(self.joint4Range[1]*dutyCycleScale)  
362.         elif state == 2:  
363.             # Rest  
364.             self.joint4.ChangeDutyCycle(self.joint4Range[0]*dutyCycleScale)  
365.         elif state == 3:  
366.             # Extension  
367.             self.joint1.ChangeDutyCycle(self.joint1Range[0]*dutyCycleScale)  
368.         elif state == 4:  
369.             # Flexion  
370.             self.joint1.ChangeDutyCycle(self.joint1Range[1]*dutyCycleScale)  
371.         elif state == 5:  
372.             # Forward  
373.             self.joint2.ChangeDutyCycle(self.joint2Range[0]*dutyCycleScale)  
374.             self.joint3.ChangeDutyCycle(self.joint3Range[1]*dutyCycleScale)  
375.         elif state == 6:  
376.             # Back  
377.             self.joint2.ChangeDutyCycle(self.joint2Range[1]*dutyCycleScale)  
378.             self.joint3.ChangeDutyCycle(self.joint3Range[0]*dutyCycleScale)  
379.         else:  
380.             print("No state found")  
381.   
382.     def endControl(self):  
383.         # Stop writing PWM signal to servos  
384.         self.joint1.stop()  
385.         self.joint2.stop()  
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386.         self.joint3.stop()  
387.         self.joint4.stop()  
388.   
389.         # Clean up ports used  
390.         GPIO.cleanup()  
391.   
392.   
393. def main():  
394.     # Set up serial connection  
395.     portName = '/dev/rfcomm0'  
396.     baudRate = 115200  
397.     dataNumBytes = 2  
398.     numSignals = 17  
399.   
400.     s = DAQ(portName, baudRate, dataNumBytes, numSignals)  
401.     s.readSerialStart()  
402.   
403.     # Set up sensors  
404.     numCalibrationPoints = 3000  
405.     gyroScaleFactor = 131.0  
406.     accScaleFactor = 16384.0  
407.     VCC = 4.98  
408.     Resistor = 5100.0  
409.     tau = 0.98  
410.   
411.     data = Sensors(gyroScaleFactor, accScaleFactor, VCC, Resistor, tau)  
412.     data.calibrateGyro(s, numCalibrationPoints)  
413.   
414.     # Set up robot arm  
415.     bot = robotArm()  
416.     bot.startControl()  
417.   
418.     # set up, train, and save model  
419.     model = Model()  
420.     model.get_training_data(s, data, 2500, 8, 3)  
421.     model.plot_pca()  
422.     model.trainSVM()  
423.     model.savemodel('8x3x2500-Pi')  
424.   
425.     # Realtime control  
426.     T = int(input("Enter how many seconds to run real time control: "))  
427.     startTime = time.time()  
428.   
429.     while(time.time() < (startTime + T)):  
430.         data.getData(s)  
431.         pred = model.predict(data.force)  
432.         bot.updateclass(pred[0])  
433.         print(pred)  
434.   
435.     # Close all the connections and end program  
436.     s.close()  
437.     bot.endControl()  
438.     print("Closed all")  
439.   
440.   
441. if __name__ == '__main__':  
442.     main()  
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B.2 – MICROCONTROLLER CODE (C++) 

01. //Include I2C library and declare variables  
02. #include <Wire.h>  
03.   
04. const int selectPins[3] = {2, 3, 4};  
05. int FSR[11];  
06. int temperature;  
07. int acc_x, acc_y, acc_z;  
08. int gyro_x, gyro_y, gyro_z;  
09. unsigned long timer = 0;  
10. long loopTimeMicroSec = 5000;  
11.   
12.   
13. void setup() {  
14.   // Start I2C and serial port  
15.   Wire.begin();  
16.   Serial.begin(115200);  
17.   
18.   // Setup the registers of the MPU-6050  
19.   setupMPU6050();  
20.   
21.   // Set up the select pins as outputs for multiplexer  
22.   for (int i=0; i<3; i++){  
23.     pinMode(selectPins[i], OUTPUT);  
24.     digitalWrite(selectPins[i], HIGH);  
25.   }  
26.   
27.   // Connect z on multiplexer to analog zero (A0)  
28.   pinMode(A0, INPUT);  
29.   
30.   // Reset the timer  
31.   timer = micros();  
32. }  
33.   
34.   
35. void loop() {  
36.   // Stabilize sampling rate  
37.   timeSync(loopTimeMicroSec);  
38.   
39.   // Read the raw data from MPU-6050  
40.   readMPU6050();  
41.   
42.   // Loop through all eight pins on multiplexer reading analog  
43.   for (byte pin=0; pin<=7; pin++){  
44.     selectMuxPin(pin);  
45.     FSR[pin] = analogRead(A0);  
46.   }  
47.   
48.   FSR[8] = analogRead(A1);  
49.   FSR[9] = analogRead(A2);  
50.   FSR[10] = analogRead(A3);  
51.   
52.   // Send raw values to Python  
53.   writeBytes(&gyro_x, &gyro_y, &gyro_z, &acc_x, &acc_y, &acc_z,  
54.     &FSR[0], &FSR[1], &FSR[2], &FSR[3], &FSR[4], &FSR[5], &FSR[6], &FSR[7], &FSR[8], &FSR[9], &FSR[10]);  
55. }  
56.   
57.   
58. void timeSync(unsigned long deltaT){  
59.   // Calculate required delay to run at 200 Hz  
60.   unsigned long currTime = micros();  
61.   long timeToDelay = deltaT - (currTime - timer);  
62.   
63.   if (timeToDelay > 5000){  
64.     delay(timeToDelay / 1000);  



Page: 31 of 37

MecE 653 - Final Report

65.     delayMicroseconds(timeToDelay % 1000);  
66.   } else if (timeToDelay > 0){  
67.     delayMicroseconds(timeToDelay);  
68.   } else {}  
69.   
70.   timer = currTime + timeToDelay;  
71. }  
72.   
73.   
74. void selectMuxPin(byte pin){  
75.   // Set the S0, S1, and S2 pins to yield Y0-Y7  
76.   for (int i=0; i<3; i++){  
77.     if (pin & (1<<i))  
78.       digitalWrite(selectPins[i], HIGH);  
79.     else  
80.       digitalWrite(selectPins[i], LOW);  
81.   }  
82. }  
83.   
84.   
85. void writeBytes(int* data1, int* data2, int* data3, int* data4, int* data5, int* data6,  
86.   int* data7, int* data8, int* data9, int* data10, int* data11, int* data12, int* data13,  
87.   int* data14, int* data15, int* data16, int* data17){  
88.   
89.   // Cast to a byte pointer  
90.   byte* byteData1 = (byte*)(data1);     byte* byteData2 = (byte*)(data2);  
91.   byte* byteData3 = (byte*)(data3);     byte* byteData4 = (byte*)(data4);  
92.   byte* byteData5 = (byte*)(data5);     byte* byteData6 = (byte*)(data6);  
93.   byte* byteData7 = (byte*)(data7);     byte* byteData8 = (byte*)(data8);  
94.   byte* byteData9 = (byte*)(data9);     byte* byteData10 = (byte*)(data10);  
95.   byte* byteData11 = (byte*)(data11);   byte* byteData12 = (byte*)(data12);  
96.   byte* byteData13 = (byte*)(data13);   byte* byteData14 = (byte*)(data14);  
97.   byte* byteData15 = (byte*)(data15);   byte* byteData16 = (byte*)(data16);  
98.   byte* byteData17 = (byte*)(data17);  
99.   
100.   // Byte array with header for transmission  
101.   byte buf[38] = {0x9F, 0x6E,  
102.                  byteData1[0],  byteData1[1],     byteData2[0],  byteData2[1],  
103.                  byteData3[0],  byteData3[1],     byteData4[0],  byteData4[1],  
104.                  byteData5[0],  byteData5[1],     byteData6[0],  byteData6[1],  
105.                  byteData7[0],  byteData7[1],     byteData8[0],  byteData8[1],  
106.                  byteData9[0],  byteData9[1],     byteData10[0], byteData10[1],  
107.                  byteData11[0], byteData11[1],    byteData12[0], byteData12[1],  
108.                  byteData13[0], byteData13[1],    byteData14[0], byteData14[1],  
109.                  byteData15[0], byteData15[1],    byteData16[0], byteData16[1],  
110.                  byteData17[0], byteData17[1],    0xAE, 0x72};  
111.   Serial.write(buf, 38);  
112. }  
113.   
114.   
115. void readMPU6050() {  
116.   //Subroutine for reading the raw data  
117.   Wire.beginTransmission(0x68);  
118.   Wire.write(0x3B);  
119.   Wire.endTransmission();  
120.   Wire.requestFrom(0x68, 14);  
121.   
122.   // Read data --> Temperature falls between acc and gyro registers  
123.   while(Wire.available() < 14);  
124.   acc_x = Wire.read() << 8 | Wire.read();  
125.   acc_y = Wire.read() << 8 | Wire.read();  
126.   acc_z = Wire.read() << 8 | Wire.read();  
127.   temperature = Wire.read() <<8 | Wire.read();  
128.   gyro_x = Wire.read()<<8 | Wire.read();  
129.   gyro_y = Wire.read()<<8 | Wire.read();  
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130.   gyro_z = Wire.read()<<8 | Wire.read();  
131. }  
132.   
133.   
134. void setupMPU6050() {  
135.   //Activate the MPU-6050  
136.   Wire.beginTransmission(0x68);  
137.   Wire.write(0x6B);  
138.   Wire.write(0x00);  
139.   Wire.endTransmission();  
140.   
141.   // Configure the accelerometer  
142.   // 2g --> 0x00, 4g --> 0x08, 8g --> 0x10, 16g --> 0x18  
143.   Wire.beginTransmission(0x68);  
144.   Wire.write(0x1C);  
145.   Wire.write(0x00);  
146.   Wire.endTransmission();  
147.   
148.   // Configure the gyro  
149.   // 250 deg/s --> 0x00, 500 deg/s --> 0x08, 1000 deg/s --> 0x10, 2000 deg/s --> 0x18  
150.   Wire.beginTransmission(0x68);  
151.   Wire.write(0x1B);  
152.   Wire.write(0x00);  
153.   Wire.endTransmission();  
154. }  
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B.3 – FILTER DESIGN CODE (MATLAB)

01. close all  
02. % read data  
03. filename = 'C:\Users\Rico5678\OneDrive\Documents\School\MecE 653\GestureControlledRoboticArm_MecE653\data\data.csv'
04. delimiter = ',';  
05. startRow = 2;  
06. formatSpec = '%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';  
07. fileID = fopen(filename,'r');  
08. dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'TextType', 'string', 'EmptyValue'

1, 'ReturnOnError', false, 'EndOfLine', '\r\n');  
09. fclose(fileID);  
10. data = [dataArray{1:end-1}];  
11. clearvars filename delimiter startRow formatSpec fileID dataArray ans;  
12.   
13. %% Raw values and FFT Plotting  
14.   
15. % get data for filtering  
16. fs = 200;  
17. N = length(data);  
18. t = (0:N-1)/fs;  
19. T = N/fs;  
20. data(:,2) = [];  
21. FSRnum = 10;  
22. FSR1 = data(:,1)';  
23. noise = 15*rand(size(t)).*sin(2*pi*50*t);  
24.   
25. %% Raw Plots  
26. % plot all FSRs  
27. fnum = 1;  
28. figure(fnum)  
29. set(0,'DefaultLineLineWidth',1.5)  
30. plot(t, data(:,1:FSRnum))  
31. xlabel('Time (s)')  
32. ylabel('Force (grams)')  
33. fnum = fnum+1;  
34.   
35. % plot single FSR with and without noise  
36. figure(fnum)  
37. hold on  
38. grid on  
39. plot(t, FSR1 + noise)  
40. plot(t, FSR1)  
41. xlabel('Time (s)')  
42. ylabel('Force (grams)')  
43. legend("50 Hz Artificial Noise", "Original Signal")  
44. fnum = fnum+1;  
45.   
46. % plot FFT of all FSRS without noise  
47. Y = fft(data);  
48. Ymag = abs(Y);  
49. Yscaled = Ymag(1:N/2+1,1:FSRnum)*2/N;  
50. f = (0:1/T:fs/2);  
51.   
52. figure(fnum)  
53. grid on  
54. plot(f, Yscaled)  
55. xlabel('Frequency (Hz)')  
56. ylabel('Magnitude (grams)')  
57. xlim([0,100])  
58. ylim([0,50])  
59. fnum = fnum+1;  
60.   
61. % plot FFT of all FSRS with noise  
62. Y = fft(data + noise');  
63. Ymag = abs(Y);  
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64. Yscaled = Ymag(1:N/2+1,1:FSRnum)*2/N;  
65. f = (0:1/T:fs/2);  
66.   
67. figure(fnum)  
68. grid on  
69. plot(f, Yscaled)  
70. xlabel('Frequency (Hz)')  
71. ylabel('Magnitude (grams)')  
72. xlim([0,100])  
73. ylim([0,50])  
74. fnum = fnum+1;  
75.   
76.   
77. %% Filter Design  
78. fp = 5;  
79. wp = fp/(fs/2);  
80. fst = 15;  
81. wst = fst/(fs/2);  
82. %% Moving Average Filter  
83.   
84. MAfilt_fc = (fp+fst);  
85. psi = 2*pi*MAfilt_fc/fs;  
86. MAn = ceil(pi/psi);   
87. MAn = 30;  
88. b = (1/MAn)*ones(1,MAn);  
89. a = 1;  
90. MAfiltFSR1 = filter(b,a,FSR1+noise);  
91. tic  
92.   
93. MAfiltdelay = 0;  
94. tic  
95. for i=1:100000  
96. temp = filter(b,a,FSR1(1:MAn));  
97. end  
98. MAfiltdelay = toc/100000;  
99. MAfiltphasedelay = phasedelay(b,a);  
100.   
101. figure(fnum)  
102. fnum = fnum+1;  
103. subplot(2,1,1)  
104. hold on  
105. freqz(b,a)  
106. [h, w] = freqz(b,a);  
107. title("Moving Average Filter")  
108. plot([wp, wst], interp1(w/pi, 20*log10(abs(h)), [wp,wst]), 'rx')  
109. subplot(2,1,2)  
110. hold off  
111. phasedelay(b,a)  
112. hold on  
113. ytickformat('%.2f')  
114. [phi,w] = phasedelay(b,a);  
115. plot([wp, wst], interp1(w(2:end)/pi, phi(2:end), [wp,wst], 'linear','extrap'), 'rx')  
116.   
117.   
118. %% Hanning Window  
119. Hannwindowsize = ceil(3.32*fs/(fst-fp));  
120. Hannwindow = hann((Hannwindowsize-1)/2, 'symmetric');  
121. b = fir1(floor(Hannwindowsize/2-1), (fst-fp)/2/(fs/2), Hannwindow);  
122. a = 1;  
123. HannfiltFSR1 = filter(b,a,FSR1+noise);  
124. tic  
125.   
126. Hannfiltdelay = 0;  
127. tic  
128. for i=1:100000  
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129. temp = filter(b,a,FSR1(1:Hannwindowsize));  
130. end  
131. Hannfiltdelay = toc/100000;  
132. Hannfiltphasedelay = phasedelay(b,a);  
133.   
134. figure(fnum)  
135. fnum = fnum+1;  
136. subplot(2,1,1)  
137. hold on  
138. freqz(b,a)  
139. [h, w] = freqz(b,a);  
140. title("Hanning Window")  
141. plot([wp,wst], interp1(w/pi, 20*log10(abs(h)), [wp,wst]), 'rx')  
142. subplot(2,1,2)  
143. ytickformat('%.2f')  
144. hold off  
145. phasedelay(b,a)  
146. hold on  
147. ytickformat('%.2f')  
148. [phi,w] = phasedelay(b,a);  
149. plot([wp,wst], interp1(w(2:end)/pi, phi(2:end), [wp,wst], 'linear','extrap'), 'rx')  
150.   
151. %% Butterworth Filter  
152.   
153. butterwp = 2*(fst-fp)/2/fs;  
154. butterws = 2*fst/fs;  
155. butterattenp = 1;  
156. butterdp = 1 - 10^(-butterattenp/20);  
157. butterattens = 44;  
158. butterds = 10^(-butterattens/20);  
159. butterN = ceil(log10(1/butterds^2-1)/(2*log10(butterws/butterwp)));  
160.   
161. [b,a] = butter(butterN, butterwp);  
162.   
163. butterfiltFSR1 = filter(b,a,FSR1+noise);  
164.   
165. butterfiltdelay = 0;  
166. tic  
167. for i=1:100000  
168. temp = filter(b,a,FSR1(1:butterN));  
169. end  
170. butterfiltdelay = toc/100000;  
171. butterfiltphasedelay = phasedelay(b,a);  
172.   
173. figure(fnum)  
174. fnum = fnum+1;  
175. subplot(2,1,1)  
176. hold on  
177. freqz(b,a)  
178. [h, w] = freqz(b,a);  
179. title("Butterworth")  
180. plot([wp,wst], interp1(w/pi, 20*log10(abs(h)), [wp,wst]), 'rx')  
181. subplot(2,1,2)  
182. ytickformat('%.2f')  
183. hold off  
184. phasedelay(b,a)  
185. hold on  
186. [phi,w] = phasedelay(b,a);  
187. plot([wp,wst], interp1(w(2:end)/pi, phi(2:end), [wp,wst], 'linear','extrap'), 'rx')  
188.   
189. %% Chebyshev type 2 filter  
190. cheby2wp = fp/(fs/2);     
191. cheby2ws = fst/(fs/2);  
192. cheby2attenp = 1;  
193. cheby2dp = 1 - 10^(-cheby2attenp/20);  
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194. cheby2attens = 44;  
195. cheby2ds = 10^(-cheby2attens/20);  
196. epsilon = sqrt(1/(1-cheby2dp)^2-1);  
197. d = sqrt(1/cheby2ds^2-1);  
198. cheby2N = ceil(acosh(d/epsilon)/acosh(cheby2ws/cheby2wp));  
199.   
200. [b,a] = cheby2(cheby2N,cheby2attens,cheby2ws);  
201.   
202. cheby2filtFSR1 = filter(b,a,FSR1+noise);  
203.   
204. cheby2filtFSRS = zeros(size(data(:,1:10)));  
205. for i=1:10  
206. cheby2filtFSRS(:,i) = filter(b,a,data(:,i)+noise');  
207. end  
208. cheby2filtdelay = 0;  
209. tic  
210. for i=1:100000  
211. temp = filter(b,a,FSR1(1:cheby2N));  
212. end  
213. cheby2filtdelay = toc/100000;  
214. cheby2phasedelay = phasedelay(b,a);  
215.   
216. figure(fnum)  
217. fnum = fnum+1;  
218. subplot(2,1,1)  
219. hold on  
220. freqz(b,a)  
221. [h, w] = freqz(b,a);  
222. title("Chebyshev Type II")  
223. plot([wp,wst], interp1(w/pi, 20*log10(abs(h)), [wp,wst]), 'rx')  
224. subplot(2,1,2)  
225. ytickformat('%.2f')  
226. hold off  
227. phasedelay(b,a)  
228. hold on  
229. [phi,w] = phasedelay(b,a);  
230. plot([wp,wst], interp1(w(1:end)/pi, phi(1:end), [wp,wst], 'linear','extrap'), 'rx')  
231.   
232. %% filter comparison  
233. figure(fnum)  
234. fnum = fnum+1;  
235. hold on;  
236. plot(t, FSR1)  
237. plot(t, FSR1+noise)  
238. plot(t,MAfiltFSR1)  
239. plot(t,HannfiltFSR1)  
240. plot(t,butterfiltFSR1)  
241. plot(t,cheby2filtFSR1)  
242. legend("Original Data", "Noisy Data", "Moving Average", "Hanning Window", "Butterworth", 
243. xlabel('Time (s)')  
244. ylabel('Force (grams)')  
245.   
246.   
247. figure(fnum)  
248. set(gca,'DefaultLineLineWidth',2)  
249. fnum = fnum+1;  
250. hold on;  
251. plot(t, FSR1+noise, 'c-', 'LineWidth', 0.5)  
252. plot(t,MAfiltFSR1)  
253. plot(t,HannfiltFSR1)  
254. plot(t,butterfiltFSR1)  
255. plot(t,cheby2filtFSR1)  
256. legend("Noisy Data", "Moving Average", "Hanning Window", "Butterworth", "Chebyshev II")  
257. xlabel('Time (s)')  
258. ylabel('Force (grams)')  
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259. xlim([9,11]);  
260. ylim([70,120]);  
261.   
262. figure(fnum)  
263. fnum = fnum+1;  
264. Y = fft(cheby2filtFSRS);  
265. Ymag = abs(Y);  
266. Yscaled = Ymag(1:N/2+1,1:FSRnum)*2/N;  
267. f = (0:1/T:fs/2);  
268.   
269. grid on  
270. plot(f, Yscaled)  
271. xlabel('Frequency (Hz)')  
272. ylabel('Magnitude (grams)')  
273. xlim([0,100])  
274. ylim([0,50])  




